Archives For Quant

c-trapHave you heard of the C-Trap? I’m not going to tell you what it is yet. Try this problem from GMATPrep® first and see whether you can avoid it

* “In a certain year, the difference between Mary’s and Jim’s annual salaries was twice the difference between Mary’s and Kate’s annual salaries. If Mary’s annual salary was the highest of the 3 people, what was the average (arithmetic mean) annual salary of the 3 people that year?

“(1) Jim’s annual salary was $30,000 that year.

“(2) Kate’s annual salary was $40,000 that year.”

I’m going to do something I normally never do at this point in an article: I’m going to tell you the correct answer. I’m not going to type the letter, though, so that your eye won’t inadvertently catch it while you’re still working on the problem. The correct answer is the second of the five data sufficiency answer choices.

How did you do? Did you pick that one? Or did you pick the trap answer, the third one?

Here’s where the C-Trap gets its name: on some questions, using the two statements together will be sufficient to answer the question. The trap is that using just one statement alone will also get you there—so you can’t pick answer (C), which says that neither statement alone works.

In the trickiest C-Traps, the two statements look almost the same (as they do in this problem), and the first one doesn’t work. You’re predisposed, then, to assume that the second statement, which seemingly supplies the “same” kind of information, also won’t work. Therefore, you don’t vet the second statement thoroughly enough before dismissing it—and you’ve just fallen into the trap.

How can you dig yourself out? First of all, just because two statements look similar, don’t assume that they either both work or both don’t. The test writers are really good at setting traps, so assume nothing.

Second, imagine that you’re teaching your 10-year-old niece how to do algebra. She’s never done this before but she’s pretty bright. She understands your explanation of what variables are and how they work. She knows that, if you give her an equation with 3 variables, and then give her values for 2 of those variables, she’ll be able to solve for the third one. What answer is she going to pick on the above problem?

Hmm. She’d pick (C) also, since that gives her values for two of the three variables in the equation that she can write from the question stem.

It’s obvious, in fact, that using the two statements together will allow you to find all three salaries, in which case you can average them. In the test-prep world, this is what’s known as a Too Good To Be True answer. If your 10-year-old niece, who just learned algebra, could get to the same answer, then chances are you’re falling into a trap. Stop, take a deep breath, and scrutinize those statements individually!

Here’s how to solve the problem.

Step 1: Glance Read Jot

Take a quick glance; what have you got? DS. Story problem: understand the story before writing.

The question asks for the average of the three salaries. What do you actually need to know in order to find an average? Right, the sum. So can you find the sum of the three salaries?

Jot that on your scrap paper: M + J + K = ?

Step 2: Reflect Organize

The first sentence provides an equation, so translate it. (Note that the second sentence says Mary’s salary is the highest.)

The positive difference between Mary’s and Jim’s salaries has to be MJ, since M is larger. Likewise, the positive difference between Mary’s and Kate’s salaries has to be MK, since M is larger.

Here’s the translated formula:

MJ = 2(MK)

Step 3: Work

By itself, that doesn’t look very helpful, but anytime DS gives you a formula that isn’t simplified, simplify it. Multiply out the right-hand side and also get “like” variables together:

MJ = 2(MK)

MJ = 2M – 2K

- J = M – 2K

Notice two things: first, negatives are annoying. Second, this formula (so far) doesn’t look anything like the question: M + J + K = ?

Is there any way to remedy those two things?

Move the –J over: 0 = M – 2K + J.

Notice that 2K is never going to fit the question, which has only K. Move that away from the others: 2K = M + J.

Interesting. The right-hand side now matches part of the question. In fact, you could substitute:

M + J + K = ?

2K = M + J

Therefore, the question becomes 2K + K = ?

If you know what K is—only K!— then you can solve. (Note: we call this process Rephrasing. Use the information given in the question stem to rephrase the question in a more simplified form.)

“(1) Jim’s annual salary was $30,000 that year.”

J = 30,000. If you plug that into M + J + K = ?, it isn’t sufficient. If you plug that into 2K = M + J, you get 2K = M + 30,000, which still isn’t sufficient. Knowing only J doesn’t get you very far. This statement is not sufficient; eliminate answers (A) and (D).

“(2) Kate’s annual salary was $40,000 that year.”

Bingo! If you know Kate’s salary, then you know the sum of all three. This statement is sufficient to answer the question.

The correct answer is (B).

If you don’t rephrase up front, and instead go through all of the work of plugging in the values for statements (1) and (2), then you may still discover the correct answer. You’ll take longer, though. You may also fall into the trap of assuming that statement (2) won’t work because it looks so very similar to statement (1) and that one didn’t work.

Key Takeaways: Data Sufficiency

(1) Don’t just write down the information in the question stem, shrug, and go straight to the statements. Push yourself to try to rephrase the question before you go to the statements.

(2) Use standard math steps and your test-taker savvy to help you know how to simplify. It’s standard algebra to try to get “like” variables together in equations. A negative sticking out in front of an equation is ugly, so that was clue #2. Finally, you’re ultimately trying to match the information in the question (M + J + K = ?), so try to rearrange your rephrased equation to match the question as much as possible. Then see whether you can substitute in to make that question simpler!

(3) Keep an eye out for Too Good to Be True answers. If an answer seems pretty obvious, then there’s a good chance you’re falling into a trap!

* GMATPrep® questions courtesy of the Graduate Management Admissions Council. Usage of this question does not imply endorsement by GMAC.


data-sufficiencySome Data Sufficiency questions present you with scenarios: stories that could play out in various complicated ways, depending on the statements. How do you get through these with a minimum of time and fuss?

Try the below problem. (Copyright: me! I was inspired by an OG problem; I’ll tell you which one at the end.)

* “During a week-long sale at a car dealership, the most number of cars sold on  any one day was 12. If at least 2 cars were sold each day, was the average daily number of cars sold during that week more than 6?

“(1) During that week, the second smallest number of cars sold on any one day was 4.

“(2) During that week, the median number of cars sold was 10.”

First, do you see why I described this as a “scenario” problem? All these different days… and some number of cars sold each day… and then they (I!) toss in average and median… and to top it all off, the problem asks for a range (more than 6). Sigh.

Okay, what do we do with this thing?

Because it’s Data Sufficiency, start by establishing the givens. Because it’s a scenario, Draw It Out.

Let’s see. The “highest” day was 12, but it doesn’t say which day of the week that was. So how can you draw this out?

Neither statement provides information about a specific day of the week, either. Rather, they provide information about the least number of sales and the median number of sales.

The use of median is interesting. How do you normally organize numbers when you’re dealing with median?

Bingo! Try organizing the number of sales from smallest to largest. Draw out 7 slots (one for each day) and add the information given in the question stem:

Screen Shot 2014-04-10 at 12.37.53 PM

Now, what about that question? It asks not for the average, but whether the average number of daily sales for the week is more than 6. Does that give you any ideas for an approach to take?

Because it’s a yes/no question, you want to try to “prove” both yes and no for each statement. If you can show that a statement will give you both a yes and a no, then you know that statement is not sufficient. Try this out with statement 1

(1) During that week, the least number of cars sold on any one day was 4.

Draw out a version of the scenario that includes statement (1):

Screen Shot 2014-04-10 at 12.38.22 PM

Can you find a way to make the average less than 6? Keep the first day at 2 and make the other days as small as possible:

Screen Shot 2014-04-10 at 12.38.58 PM

The sum of the numbers is 34. The average is 34 / 7 = a little smaller than 5.

Can you also make the average greater than 6? Try making all the numbers as big as possible:

Screen Shot 2014-04-10 at 12.39.24 PM

(Note: if you’re not sure whether the smallest day could be 4—the wording is a little weird—err on the cautious side and make it 3.)

You may be able to eyeball that and tell it will be greater than 6. If not, calculate: the sum is 67, so the average is just under 10.

Statement (1) is not sufficient because the average might be greater than or less than 6. Cross off answers (A) and (D).

Now, move to statement (2):

(2) During that week, the median number of cars sold was 10.

Again, draw out the scenario (using only the second statement this time!).

Screen Shot 2014-04-10 at 12.39.59 PM

Can you make the average less than 6? Test the smallest numbers you can. The three lowest days could each be 2. Then, the next three days could each be 10.

Screen Shot 2014-04-10 at 12.40.21 PM

The sum is 6 + 30 + 12 = 48. The average is 48 / 7 = just under 7, but bigger than 6. The numbers cannot be made any smaller—you have to have a minimum of 2 a day. Once you hit the median of 10 in the middle slot, you have to have something greater than or equal to the median for the remaining slots to the right.

The smallest possible average is still bigger than 6, so this statement is sufficient to answer the question. The correct answer is (B).

Oh, and the OG question is DS #121 from OG13. If you think you’ve got the concept, test yourself on the OG problem.


Key Takeaway: Draw Out Scenarios

(1) Sometimes, these scenarios are so elaborate that people are paralyzed. Pretend your boss just asked you to figure this out. What would you do? You’d just start drawing out possibilities till you figured it out.

(2) On Yes/No DS questions, try to get a Yes answer and a No answer. As soon as you do that, you can label the statement Not Sufficient and move on.

(3) After a while, you might have to go back to your boss and say, “Sorry, I can’t figure this out.” (Translation: you might have to give up and guess.) There isn’t a fantastic way to guess on this one, though I probably wouldn’t guess (E). The statements don’t look obviously helpful at first glance… which means probably at least one of them is!


gmat-quant-strategySo you’ve been told over and over that guessing is an important part of the GMAT. But knowing you’re supposed to guess and knowing when you’re supposed to guess are two very different things. Here are a few guidelines for how to decide when to guess.

But first, know that there are two kinds of guesses: random guesses and educated guesses. Both have their place on the GMAT. Random guesses are best for the questions that are so tough, that you don’t even know where to get started. Educated guesses, on the other hand, are useful when you’ve made at least some progress, but aren’t going to get all the way to an answer in time.

Here are a few different scenarios that should end in a guess.

Scenario 1: I’ve read the question twice, and I have no idea what it’s asking.

This one is pretty straightforward. Don’t worry about whether the question is objectively easy or difficult. If it’s too hard for you, it’s not worth doing. In fact, it’s so not worth doing that it’s not even worth your time narrowing down answer choices to make an educated guess. In fact, if it’s that difficult, it may even be better for you to get it wrong!

To make the most of your random guesses, you should use the same answer choice every time. The difference is slight, but it does up your odds of getting some of these random guess right.

Scenario 2: I had a plan, but I hit a wall.

Often, when this happens, you haven’t yet spent 2 minutes on the problem. So why guess? Maybe now you have a better plan for how to get to the answer. I know this is hard to hear, but don’t do it! To stay on pace for the entire section, you have to stay disciplined and that means that you only have one chance to get each question right.

The good news is that no 1 question you get wrong will kill your score. But, 1 question can really hurt your score if you spend too long on it! Once you realize that your plan didn’t work, it’s time to make an educated guess. You’ve already spent more than a minute on this question (hopefully not more than 2!), and you probably have some sense of which answers are more likely to be right. Take another 15 seconds (no more!) and make your best educated guess.

Scenario 3: I got an answer, but it doesn’t match any of the answer choices.

This is another painful one, but it’s an almost identical situation to Scenario 2. It means you either made a calculation error somewhere along the way, or you set the problem up incorrectly to begin with. In an untimed setting, both of these problems would have the same solution: go back over your work and find the mistake. On the GMAT, however, that process is too time-consuming. Plus, even once you find your mistake, you still have to redo all the work!

Once again, though it might hurt, it’s still in your best interest to let the question go. If you can narrow down the answer choices, great (though don’t spend longer than 15 or 20 seconds doing so). If not, don’t worry about it. Just make a random guess and vow to be more careful on the next one (and all the rest after that!).

Scenario 4: I checked my pacing chart and I’m more than 2 minutes behind.

Pacing problems are best dealt with early. If you’re more than 2 minutes behind, don’t wait until another 5 questions have passed and you realize you’re 5 minutes behind. At this point, you want to find a question in the next 5 that you can guess randomly on. The quicker you can identify a good candidate to skip, the more time you can make up.

This is another scenario where random guessing is best. Educated guessing takes time, and we’re trying to save as much time as possible. Look for questions that take a long time to read, or that deal with topics you’re not as strong in, but most importantly, just make the decision and pick up the time.

Wrap Up

Remember, this test is not like high school exams; it’s not designed to have every question answered. This test is about consistency on questions you know how to do. Knowing when to get out of a question is one of the most fundamental parts of a good score. The better you are at limiting time spent on really difficult questions, the more time you have to answer questions you know how to do.

Plan on taking the GMAT soon? We have the world’s best GMAT prep programs starting all the time. And, be sure to find us on Facebook and Google+, and follow us on Twitter!

AppIconWe are happy to announce that the latest version of our free GMAT app, Pocket GMAT Flashcards, is now available for download via the App store! New updates include:

  • Back-end and usability fixes
  • Content overhaul
  • Updated for iOS7
  • Shiny new icon

Containing over 350 GMAT quant flash cards, Pocket GMAT uses an adaptive algorithm developed by Manhattan Prep instructors to help you target cards you most need help with. Allowing you to strengthen your GMAT quantitative skills anywhere and at any time, the Pocket GMAT app is an indispensable tool for iPhone users.

The app also now works better on iOS6 devices and we have fixed issues with scrolling and swiping, so overall navigation is smoother. We’ve also fixed content errata and made the images look better.

Manhattan Prep has teamed up with Learningpod to make Pocket GMAT free for everyone! In addition to the adaptive algorithm, there is also a sequential practice mode that lets you flip through the cards however you want. You also have the ability to enter a Target Date to keep you on pace and track your progress. The flash cards are organized into “KeyRings” by topic and include algebra, number properties, word problems, geometry, fractions, decimals, and percents.

We hope the new updates improve your studying experience, and if you’re as excited as we are about the revisions, please let us know in the review section of the App store. We use your feedback to make our study tools the best they can possibly be!

gmat-quantStop! Before you dive in and start calculating on a math problem, reflect for a moment. How can you set up the work to minimize the number of annoying calculations?

Try the below Percent problem from the free question set that comes with your GMATPrep® software. The problem itself isn’t super hard but the calculations can become time-consuming. If you find the problem easy, don’t dismiss it. Instead, ask yourself: how can you get to the answer with an absolute minimum of annoying calculations?



Number of Votes

Percent of Votes for Candidate P

Percent of Votes for Candidate Q






















* ” The table above shows the results of a recent school board election in which the candidate with the higher total number of votes from the five districts was declared the winner. Which district had the greatest number of votes for the winner?

“(A) 1

“(B) 2

“(C) 3

“(D) 4

“(E) 5”


Ugh. We have to figure out what they’re talking about in the first place!

The first sentence of the problem describes the table. It shows 5 different districts with a number of votes, a percentage of votes for one candidate and a percentage of votes for a different candidate.

Hmm. So there were two candidates, P and Q, and the one who won the election received the most votes overall. The problem doesn’t say who that was. I could calculate that from the given data, but I’m not going to do so now! I’m only going to do that if I have to.

Let’s see. The problem then asks which district had the greatest number of votes for the winner. Ugh. I am going to have to figure out whether P or Q won. Let your annoyance guide you: is there a way to tell who won without actually calculating all the votes?

Continue Reading…

GMAT-geometryA couple of months ago, we talked about what to do when a geometry problem pops up on the screen. Do you remember the basic steps? Try to implement them on the below GMATPrep® problem from the free tests.

* ”In the xy-plane, what is the y-intercept of line L?

“(1) The slope of line L is 3 times its y-intercept
“(2) The x-intercept of line L is – 1/3”

My title (3 Steps to Better Geometry) is doing double-duty. First, here’s the general 3-step process for any quant problem, geometry included:

Screen Shot 2014-02-05 at 12.13.43 PM

All geometry problems also have three standard strategies that fit into that process.

First, pick up your pen and start drawing! If they give you a diagram, redraw it on your scrap paper. If they don’t (as in the above problem), draw yourself a diagram anyway. This is part of your Glance-Read-Jot step.

Second, identify the “wanted” element and mark this element on your diagram. You’ll do this as part of the Glance-Read-Jot step, but do it last so that it leads you into the Reflect-Organize stage. Where am I trying to go? How can I get there?

Third, start Working! Infer from the given information. Geometry on the GMAT can be a bit like the proofs that we learned to do in high school. You’re given a couple of pieces of info to start and you have to figure out the 4 or 5 steps that will get you over to the answer, or what you’re trying to “prove.”

Let’s dive into this problem. They’re talking about a coordinate plane, so you know the first step: draw a coordinate plane on your scrap paper. The question indicates that there’s a line L, but you don’t know anything else about it, so you can’t actually draw it. You do know, though, that they want to know the y-intercept. What does that mean?

They want to know where line L crosses the y-axis. What are the possibilities?

Infinite, really. The line could slant up or down or it could be horizontal. In any of those cases, it could cross anywhere. In fact, the line could even be vertical, in which case it would either be right on the y-axis or it wouldn’t cross the y-axis at all. Hmm.
Continue Reading…

challenge problem
We invite you to test your GMAT knowledge for a chance to win! The second week of every month, we will post a new Challenge Problem for you to attempt. If you submit the correct answer, you will be entered into that month’s drawing for free Manhattan GMAT prep materials. Tell your friends to get out their scrap paper and start solving!

Here is this month’s problem:

If pq, and r are different positive integers such that p + q + r = 6, what is the value of x ?

(1) The average of xp and xq is xr.

(2) The average of xp and xr is not xq.

Continue Reading…

Math-strategies-gmatLast time, we talked about the first 2 of 4 quant strategies that everyone must master: Test Cases and Choose Smart Numbers.

Today, we’re going to cover the 3rd and 4th strategies. First up, we have Work Backwards. Let’s try a problem first: open up your Official Guide, 13th edition (OG13), and try problem solving #15 on page 192. (Give yourself about 2 minutes.)

I found this one by popping open my copy of OG13 and looking for a certain characteristic that meant I knew I could use the Work Backwards technique. Can you figure out how I knew, with just a quick glance, that this problem qualified for the Work Backwards strategy? (I’ll tell you at the end of the solution.)

For copyright reasons, I can’t reproduce the entire problem, but here’s a summary: John spends 1/2 his money on fruits and vegetables, 1/3 on meat, and 1/10 on treats from the bakery. He also spends $6 on candy. By the time he’s done, he’s spent all his money. The problem asks how much money he started out with in the first place.

Here are the answer choices:

“(A) $60

“(B) $80

“(C) $90

“(D) $120

“(E) $180”

Work Backwards literally means to start with the answers and do all of the math in the reverse order described in the problem. You’re essentially plugging the answers into the problem to see which one works. This strategy is very closely tied to the first two we discussed last time—except, in this instance, you’re not picking your own numbers. Instead, you’re using the numbers given in the answers.

In general, when using this technique, start with answer (B) or (D), your choice. If one looks like an easier number, start there. If (C) looks a lot easier than (B) or (D), start with (C) instead.

This time, the numbers are all equally “hard,” so start with answer (B). Here’s what you’re going to do:

(B) $80


F + V (1/2)

M (1/3)

B (1/10)

C $6


(B) $80




Set up a table to calculate each piece. If John starts with $80, then he spends $40 on fruits and vegetables. He spends… wait a second! $80 doesn’t go into 1/3 in a way that would give a dollar-and-cents amount. It would be $26.66666 repeating forever. This can’t be the right answer!

Interesting. Cross off answer (B), and glance at the other answers. They’re all divisible by 3, so we can’t cross off any others for this same reason.

Try answer (D) next.


F + V (1/2)

M (1/3)

B (1/10)

C $6

Add to?

(B) $80





(D) $120







In order for (D) to be the correct answer, the individual calculations would have to add back up to $120, but they don’t. They add up to $118.

Okay, so (D) isn’t the correct answer either. Now what? Think about what you know so far. Answer (D) didn’t work, but the calculations also fell short—$118 wasn’t large enough to reach the starting point. As a result, try a smaller starting point next.


F + V (1/2)

M (1/3)

B (1/10)

C $6


(B) $80





(D) $120






(C) $90







It’s a match! The correct answer is (C).

Now, why would you want to do the problem this way, instead of the “straightforward,” normal math way? The textbook math solution on this one involves finding common denominators for three fractions—somewhat annoying but not horribly so. If you dislike manipulating fractions, or know that you’re more likely to make mistakes with that kind of math, then you may prefer to work backwards.

Note, though, that the above problem is a lower-numbered problem. On harder problems, this Work Backwards technique can become far easier than the textbook math. Try PS #203 in OG13. I would far rather Work Backwards on this problem than do the textbook math!

So, have you figured out how to tell, at a glance, that a problem might qualify for this strategy?

It has to do with the form of the answer choices. First, they need to be numeric. Second, the numbers should be what we consider “easy” numbers. These could be integers similar to the ones we saw in the above two problems. They could also be smaller “easy” fractions, such as 1/2, 1/3, 3/2, and so on.

Further, the question should ask about a single variable or unknown. If it asks for x, or for the amount of money that John had to start, then Work Backwards may be a great solution technique. If, on the other hand, the problem asks for xy, or some other combination of unknowns, then the technique may not work as well.

(Drumroll, please) We’re now up to our fourth, and final, Quant Strategy that Everyone Must Master. Any guesses as to what it is? Try this GMATPrep© problem.



“In the figure above, the radius of the circle with center O is 1 and BC = 1. What is the area of triangular region ABC?

Screen Shot 2013-12-29 at 3.26.36 PM

If the radius is 1, then the bottom line (the hypotenuse) of the triangle is 2. If you drop a line from point B to that bottom line, or base, you’ll have a height and can calculate the area of the triangle, since A = (1/2)bh.

You don’t know what that height is, yet, but you do know that it’s smaller than the length of BC. If BC were the height of the triangle, then the area would be A = (1/2)(2)(1) = 1. Because the height is smaller than BC, the area has to be smaller than 1. Eliminate answers (C), (D), and (E).

Now, decide whether you want to go through the effort of figuring out that height, so that you can calculate the precise area, or whether you’re fine with guessing between 2 answer choices. (Remember, unless you’re going for a top score on quant, you only have to answer about 60% of the questions correctly, so a 50/50 guess with about 30 seconds’ worth of work may be your best strategic move at this point on the test!)

The technique we just used to narrow down the answers is one I’m sure you’ve used before: Estimation. Everybody already knows to estimate when the problem asks you for an approximate answer. When else can (and should) you estimate?

Glance at the answers. Notice anything? They can be divided into 3 “categories” of numbers: less than 1, 1, and greater than 1.

Whenever you have a division like this (greater or less than 1, positive or negative, really big vs. really small), then you can estimate to get rid of some answers. In many cases, you can get rid of 3 and sometimes even all 4 wrong answers. Given the annoyingly complicated math that sometimes needs to take place in order to get to the final answer, your best decision just might be to narrow down to 2 answers quickly and then guess.

Want to know how to get to the actual answer for this problem, which is (B)? Take a look at the full solution here.

The 4 Quant Strategies Everyone Must Master

Here’s a summary of our four strategies.

(1) Test Cases.

-      Especially useful on Data Sufficiency with variables / unknowns. Pick numbers that fit the constraints given and test the statement. That will give you a particular answer, either a value (on Value DS) or a yes or no (on Yes/No DS). Then test another case, choosing numbers that differ from the first set in a mathematically appropriate way (e.g., positive vs. negative, odd vs. even, integer vs. fraction). If you get an “always” answer (you keep getting the same value or you get always yes or always no), then the statement is sufficient. If you find a different answer (a different value, or a yes plus a no), then that statement is not sufficient.

-      Also useful on “theory” Problem Solving questions, particularly ones that ask what must be true or could be true. Test the answers using your own real numbers and cross off any answers that don’t work with the given constraints. Keep testing, using different sets of numbers, till you have only one answer left (or you think you’ve spent too much time).

(2) Choose Smart Numbers.

-      Used on Problem Solving questions that don’t require you to find something that must or could be true. In this case, you need to select just one set of numbers to work through the math in the problem, then pick the one answer that works.

-      Look for variable expressions (no equals or inequalities signs) in the answer choices. Will also work with fraction or percent answers.

(3) Work Backwards.

-      Used on Problem Solving questions with numerical answers. Most useful when the answers are “easy”—small integers, easy fractions, and so on—and the problem asks for a single variable. Instead of selecting your own numbers to try in the problem, use the given answer choices.

-      Start with answer (B) or (D). If a choice doesn’t work, cross it off but examine the math to see whether you should try a larger or smaller choice next.

(4) Estimate.

-      You’re likely already doing this whenever the problem actually asks you to find an approximate answer, but look for more opportunities to save yourself time and mental energy. When the answers are numerical and either very far apart or split across a “divide” (e.g., greater or less than 0, greater or less than 1), you can often estimate to get rid of 2 or 3 answers, sometimes even all 4 wrong answers.

The biggest takeaway here is very simple: these strategies are just as valid as any textbook math strategies you know, and they also require just as much practice as those textbook strategies. Make these techniques a part of your practice: master how and when to use them, and you will be well on your way to mastering the Quant portion of the GMAT!

Read The 4 Math Strategies Everyone Must Master, Part 1.