Archives For Quant

gmat-quant-help-tips-problemHow did it go last time with the rate problem? I’ve got another story problem for you, but this time we’re going to cover a different math area.

Just a reminder: here’s a link to the first (and long ago) article in this series: making story problems real. When the test gives you a story problem, do what you would do in the real world if your boss asked you a similar question: a back-of-the-envelope calculation to get a “close enough” answer.

If you haven’t yet read the earlier articles, go do that first. Learn how to use this method, then come back here and test your new skills on the problem below.

This is a GMATPrep® problem from the free exams. Give yourself about 2 minutes. Go!

* “Jack and Mark both received hourly wage increases of 6 percent. After the wage increases, Jack’s hourly wage was how many dollars per hour more than Mark’s?

“(1) Before the wage increases, Jack’s hourly wage was $5.00 per hour more than Mark’s.

“(2) Before the wage increases, the ratio of Jack’s hourly wage to Mark’s hourly wage was 4 to 3.”

Data sufficiency! On the one hand, awesome: we don’t have to do all the math. On the other hand, be careful: DS can get quite tricky.

Okay, you and your (colleague, friend, sister…pick a real person!) work together and you both just got hourly wage increases of 6%. (You’re Jack and your friend is Mark.) Now, the two of you are trying to figure out how much more you make.

Hmm. If you both made the same amount before, then a 6% increase would keep you both at the same level, so you’d make $0 more. If you made $100 an hour before, then you’d make $106 now, and if your colleague (I’m going to use my co-worker Whit) made $90 an hour before, then she’d be making…er, that calculation is annoying.

Actually, 6% is pretty annoying to calculate in general. Is there any way around that?

There are two broad ways; see whether you can figure either one out before you keep reading.

First, you could make sure to choose “easy” numbers. For example, if you choose $100 for your wage and half of that, $50 an hour, for Whit’s wage, the calculations become fairly easy. After you calculate the increase for you based on the easier number of $100, you know that her increase is half of yours.

Oh, wait…read statement (1). That approach isn’t going to work, since this choice limits what you can choose, and that’s going to make calculating 6% annoying.

Second, you may be able to substitute in a different percentage. Depending on the details of the problem, the specific percentage may not matter, as long as both hourly wages are increased by the same percentage.

Does that apply in this case? First, the problem asks for a relative amount: the difference in the two wages. It’s not always necessary to know the exact numbers in order to figure out a difference.

Second, the two statements continue down this path: they give relative values but not absolute values. (Yes, $5 is a real value, but it represents the difference in wages, not the actual level of wages.) As a result, you can use any percentage you want. How about 50%? That’s much easier to calculate.

Okay, back to the problem. The wages increase by 50%. They want to know the difference between your rate and Whit’s rate: Y – W = ?

“(1) Before the wage increases, Jack’s hourly wage was $5.00 per hour more than Mark’s.”

Okay, test some real numbers.

Case #1: If your wage was $10, then your new wage would be $10 + $5 = $15. In this case, Whit’s original wage had to have been $10 – $5 = $5 and so her new wage would be $5 + $2.50 = $7.50. The difference between the two new wages is $7.50.

Case #2: If your wage was $25, then your new wage would be $25 + $12.50 = $37.50. Whit’s original wage had to have been $25 – $5 = $20, so her new wage would be $20 + $10 = $30. The difference between the two new wages is…$7.50!

Wait, seriously? I was expecting the answer to be different. How can they be the same?

At this point, you have two choices: you can try one more set of numbers to see what you get or you can try to figure out whether there really is some rule that would make the difference always $7.50 no matter what.

If you try a third case, you will discover that the difference is once again $7.50. It turns out that this statement is sufficient to answer the question. Can you articulate why it must always work?

The question asks for the difference between their new hourly wages. The statement gives you the difference between their old hourly wages. If you increase the two wages by the same percentage, then you are also increasing the difference between the two wages by that exact same percentage. Since the original difference was $5, the new difference is going to be 50% greater: $5 + $2.50 = $7.50.

(Note: this would work exactly the same way if you used the original 6% given in the problem. It would just be a little more annoying to do the math, that’s all.)

Okay, statement (1) is sufficient. Cross off answers BCE and check out statement (2):

“(2) Before the wage increases, the ratio of Jack’s hourly wage to Mark’s hourly wage was 4 to 3.”

Hmm. A ratio. Maybe this one will work, too, since it also gives us something about the difference? Test a couple of cases to see. (You can still use 50% here instead of 6% in order to make the math easier.)

Case #1: If your initial wage was $4, then your new wage would be $4 + $2 = $6. Whit’s initial wage would have been $3, so her new wage would be $3 + $1.5 = $4.50. The difference between the new wages is $1.5.

Case #2: If your initial wage was $8, then your new wage would be $8 + $4 = $12. Whit’s initial wage would have been $6, so her new wage would be $6 + $3 = $9. The difference is now $3!

Statement (2) is not sufficient. The correct answer is (A).

Now, look back over the work for both statements. Are there any takeaways that could get you there faster, without having to test so many cases?

In general, if you have this set-up:

- The starting numbers both increase or decrease by the same percentage, AND

- you know the numerical difference between those two starting numbers

? Then you know that the difference will change by that same percentage. If the numbers go up by 5% each, then the difference also goes up by 5%. If you’re only asked for the difference, that number can be calculated.

If, on the other hand, the starting difference can change, then the new difference will also change. Notice that in the cases for the second statement, the difference between the old wages went from $1 in the first case to $2 in the second. If that difference is not one consistent number, then the new difference also won’t be one consistent number.

Key Takeaways: Make Stories Real

(1) Put yourself in the problem. Plug in some real numbers and test it out. Data Sufficiency problems that don’t offer real numbers for some key part of the problem are great candidates for this technique.

(2) In the problem above, the key to knowing you could test cases was the fact that they kept talking about the hourly wages but they never provided real numbers for those hourly wages. The only real number they provided represented a relative difference between the two numbers; that relative difference, however, didn’t establish what the actual wages were.

* GMATPrep® questions courtesy of the Graduate Management Admissions Council. Usage of this question does not imply endorsement by GMAC.

gmat-quant-help-tips-problemIn the past, we’ve talked about making story problems real. In other words, when the test gives you a story problem, don’t start making tables and writing equations and figuring out the algebraic solution. Rather, do what you would do in the real world if someone asked you this question: a back-of-the-envelope calculation (involving some math, sure, but not multiple equations with variables).

If you haven’t yet read the article linked in the last paragraph, go do that first. Learn how to use this method, then come back here and test your new skills on the problem below.

This is a GMATPrep® problem from the free exams. Give yourself about 2 minutes. Go!

* “Machines X and Y work at their respective constant rates. How many more hours does it take machine Y, working alone, to fill a production order of a certain size than it takes machine X, working alone?

“(1) Machines X and Y, working together, fill a production order of this size in two-thirds the time that machine X, working alone, does.

“(2) Machine Y, working alone, fills a production order of this size in twice the time that machine X, working alone, does.”

You work in a factory. Your boss just came up to you and asked you this question. What do you do?

In the real world, you’d never whip out a piece of paper and start writing equations. Instead, you’d do something like this:

I need to figure out the difference between how long it takes X alone and how long it takes Y alone.

Okay, statement (1) gives me some info. Hmm, so if machine X takes 1 hour to do the job by itself, then the two machines together would take two-thirds…let’s see, that’s 40 minutes…

Wait, that number is annoying. Let’s say machine X takes 3 hours to do the job alone, so the two machines take 2 hours to do it together.

What next? Oh, right, how long does Y take? If they can do it together in 2 hours, and X takes 3 hours to do the job by itself, then X is doing 2/3 of the job in just 2 hours. So Y has to do the other 1/3 of the job in 2 hours. Continue Reading…

gmat-quant-tipsMemorize what? I’m not going to tell you yet. Try this problem from the GMATPrep® free practice tests first and see whether you can spot the most efficient solution.

Screen Shot 2014-05-29 at 2.40.57 PM

All right, have you got an answer? How satisfied are you with your solution? If you did get an answer but you don’t feel as though you found an elegant solution, take some time to review the problem yourself before you keep reading.

Step 1: Glance Read Jot

Take a quick glance; what have you got? PS. A given equation, xy = 1. A seriously ugly-looking equation. Some fairly “nice” numbers in the answers. Hmm, maybe you should work backwards from the answers?

Jot the given info on the scrap paper.

Step 2: Reflect Organize

Oh, wait. Working backwards isn’t going to work—the answers don’t stand for just a simple variable.

Okay, what’s plan B? Does anything else jump out from the question stem?

Hey, those ugly exponents…there is one way in which they’re kind of nice. They’re both one of the three common special products. In general, when you see a special product, try rewriting the problem usually the other form of the special product.

Step 3: Work

Here’s the original expression again:

Screen Shot 2014-05-29 at 2.31.24 PM

Let’s see.

Screen Shot 2014-05-29 at 2.32.25 PM

Interesting. I like that for two reasons. First of all, a couple of those terms incorporate xy and the question stem told me that xy = 1, so maybe I’m heading in the right direction. Here’s what I’ve got now:

Screen Shot 2014-05-29 at 2.33.22 PM

And that takes me to the second reason I like this: the two sets of exponents look awfully similar now, and they gave me a fraction to start. In general, we’re supposed to try to simplify fractions, and we do that by dividing stuff out.

Screen Shot 2014-05-29 at 2.34.28 PM

How else can I write this to try to divide the similar stuff out? Wait, I’ve got it:

The numerator: Screen Shot 2014-05-29 at 2.35.25 PM

The denominator: Screen Shot 2014-05-29 at 2.36.02 PM

They’re almost identical! Both of the Screen Shot 2014-05-29 at 2.37.06 PMterms cancel out, as do the Screen Shot 2014-05-29 at 2.37.41 PMterms, leaving me with:

Screen Shot 2014-05-29 at 2.38.29 PM

I like that a lot better than the crazy thing they started me with. Okay, how do I deal with this last step?

First, be really careful. Fractions + negative exponents = messy. In order to get rid of the negative exponent, take the reciprocal of the base:

Screen Shot 2014-05-29 at 2.39.05 PM

Next, dividing by 1/2 is the same as multiplying by 2:

Screen Shot 2014-05-29 at 2.39.54 PM

That multiplies to 16, so the correct answer is (D).

Key Takeaways: Special Products

(1) Your math skills have to be solid. If you don’t know how to manipulate exponents or how to simplify fractions, you’re going to get this problem wrong. If you struggle to remember any of the rules, start building and drilling flash cards. If you know the rules but make careless mistakes as you work, start writing down every step and pausing to think about where you’re going before you go there. Don’t just run through everything without thinking!

(2) You need to memorize the special products and you also need to know when and how to use them. The test writers LOVE to use special products to create a seemingly impossible question with a very elegant solution. Whenever you spot any form of a special product, write the problem down using both the original form and the other form. If you’re not sure which one will lead to the answer, try the other form first, the one they didn’t give you; this is more likely to lead to the correct answer (though not always).

(3) You may not see your way to the end after just the first step. That’s okay. Look for clues that indicate that you may be on the right track, such as xy being part of the other form. If you take a few steps and come up with something totally crazy or ridiculously hard, go back to the beginning and try the other path. Often, though, you’ll find the problem simplifying itself as you get several steps in.

* GMATPrep® questions courtesy of the Graduate Management Admissions Council. Usage of this question does not imply endorsement by GMAC.

 

 

With GMAT INTERACT™ coming June 16th, we’d like to take you behind-the-scenes to explore some fun facts about GMAT INTERACT and the creation process that has made all of this possible. Here are a few fun facts we’d like to share.

1. GMAT INTERACT was years in the making.

gmat interact

 

It took over 6,000 hours of development to bring GMAT INTERACT to life. An expert team of Manhattan Prep designers, coders, developers, and instructors worked for over three years on the design and development of the platform to create a user experience that is unlike anything else in test prep.

2. This is the first GMAT learning platform that is truly interactive.

education technology

GMAT INTERACT is a comprehensive on demand, self-paced program that features 35+ lessons that are interactive, funny, and completely directed by you. No two people see the same thing. Designed around the student-teacher connection, an expert Manhattan Prep instructor will guide you through each section of the GMAT, asking you questions and prompting you to think about the content presented. What’s more: every response you give tailors the lesson you’ll receive.

3. We’ve made GMAT Fun!

gmat online course

Manhattan GMAT is known for our incredible instructors (just check out our Beat The GMAT Verified Reviews). Not only are our teachers top scoring GMAT experts, they’re also fun and engaging—and we’ve put them front and center in GMAT INTERACT. And, we may have also thrown in a sock puppet or two…

To give you a taste of the fun you can expect, here are some facts about GMAT INTERACT:

o Number of times you get to see Tommy dance: 3
o Number of times Whitney Garner laughs on camera: uncountable
o Most takes we needed for a clip: 16
o Number of times we cursed on camera and had to toss the clip: 11
o Number of dolphin drawings used: 1
o Number of dinosaur cat robots destroyed in production: 1
o Number of bubbles used in the Evil Grammar Lab: 521
o Number of cavemen used in production: 1

4. With GMAT INTERACT, you don’t get 1 Manhattan Prep instructor – you get 11!

best gmat online course

When we say that GMAT INTERACT is comprehensive – we mean it! We put eleven of our most accomplished instructors in front of the camera, take-after-take, and are delivering them to your computer and mobile devices wherever you are. Not just a video, our instructors will engage with you based on the responses and answers you input.

5. You don’t have to wait until June 16th to try GMAT INTERACT!

best online education platform

While the full version of GMAT INTERACT won’t be available until June 16th for purchase, you can try a FREE GMAT INTERACT Geometry Lesson right now, for free. So what are you waiting for? Jump in and have some fun! Test prep doesn’t have to be boring ever again!

geometry-math-tipsThe GMAT quant section has many faces – there are a number of content areas, and it is best to try to master as many of them as you can before test day. It is important, however, that you not compartmentalize too much. In many of the harder questions in fact, two or more topics often show up together. You can easily find quadratics in a consecutive integer question, coordinate geometry in a probability question, number properties in a function question, for example. One common intersection of two topics that I find surprises many students is that of geometry and algebra. Many people expect a geometry question to be about marking up diagrams with values or tick marks to show equality and/or applying properties and formulas to calculate or solve. While these are no doubt important skill sets in geometry, don’t forget to pull out one of the most important skills from your  GMAT tool bag – the almighty variable! x’s and y’s have a welcomed home in many a geometry question, though you might find that you are the one who has to take the initiative to put them there!

Take a look at this data sufficiency question from GMATPrep®

Screen Shot 2014-05-07 at 1.38.36 PM

In the figure shown, the measure of slopePRS is how many degrees greater than the measure of slopePQR?

(1) The measure ofslope QPR is 30 degrees.

(2) The sum of the measures of slope PQR and slopePRQ is 150 degrees.

How did you do? Don’t feel bad if you’re a little lost on this one. This is a difficult question, though you’ll see that with the right moves it is quite doable. At the end of this discussion, you’ll even see how you could put up a good guess on this one.

As is so often the case in a data sufficiency question, the right moves here start with the stem – in rephrasing the question. Unfortunately the stem doesn’t appear to provide us with a lot of given information. As indicated in the picture, you have a 90 degree angle at slope PQR and that seems like all that you are given, but it’s not! There are some other inherent RELATIONSHIPS, ones that are implied by the picture. For example slopePRS and slopePRQ sum to 180 degrees. The problem, however, is how do you CAPTURE THOSE RELATIONSHIPS? The answer is simple – you capture those relationships the way you always capture relationships in math when the relationship is between two unknown quantities – you use variables!

But where should you put the variables and how many variables should you use?  This last question is one that you’ll likely find yourself pondering  a number of times on the GMAT. Some believe the answer to be a matter of taste. My thoughts are always use as few variables as possible. If you can capture all of the relationships that you want to capture with one variable, great. If you need two variables, so be it. The use of three or more variables would be rather uncommon in a geometry question, though you could easily see that in a word problem.  Keep one thing in mind when assigning variables: the more variables you use, usually the more equations you will need to write in order to solve.

As for the first question above about where to place the variables, you can take a closer look in this question at what they are asking and use that as a guide. They ask for the   (degree) difference between slopePRS and slopePQR. Since slopePRS is in the question, start by labeling slopePRS as x. Since slopePRS and slope PRQ sum to 180 degrees, you can also label slopePRQ as (180 – x) and slope RPS as (180 – x – 90) or (90 – x).

Can you continue to label the other angles in triangle PRQ in terms of x or is it now time to place a second variable, y? Since you still have two other unknown quantities in that triangle, it’s in fact time for that y. The logical place of where to put it is on slope PQR since that is also part of the actual question. The temptation is to stop there – DON’T! Continue to label the final angle of the triangle, slopeQPR, using your newfound companions, x and y. slopeQPR can be labeled as [180 – y – (180 – x)] or (xy). Now all of the angles in the triangle are labeled and you are poised and ready to craft an algebraic equation/expression to capture any other relationships that might come your way.

Screen Shot 2014-05-07 at 1.44.12 PM

Before you rush off to the statements, however, there is one last step. Formulate what the question is really asking in terms of x and y. The question rephrases to “What is the value of xy?”

Now you can finally head to the statements. Oh the joy of a fully dissected data sufficiency stem – 90% of the work has already been done!

Statement (1) tells you that the measure of slopeQPR is 30 degrees. Using your xy expression from the newly labeled diagram as the value of slope QPR, you can jot down the equation xy = 30. Mission accomplished! The statement is sufficient to answer the question “what is the value of xy?”

Statement (2) indirectly provides the same information as statement (1). If the two other angles of triangle PQR sum to 150 degrees, then slopeQPR is 30 degrees, so the statement is sufficient as well. If you somehow missed this inference and instead directly pulled from the diagram y + (180 – x) and set that equal to 150, you’d come to the same conclusion. Either way the algebra saves the day!

The answer to the question is D, EACH statement ALONE is sufficient to answer the question asked.

NOTE here that from a strategic guessing point of view, noticing that statements (1) and (2) essentially provide the same information allows you to eliminate answer choices A, B and C: A and B because how could it be one and not the other if they are the same, and C because there is nothing gained by combining them if they provide exactly the same information.

The takeaways from this question are as follows:

(1) When a geometry question has you staring at the diagram, uncertain of how to proceed in marking things up or capturing relationships that you know exist – use variables! Those variables will help you move through the relationships just as actual values would.

(2) In data sufficiency geometry questions, when possible represent the question in algebraic form so the target becomes clear and so that the rules of algebra are there to help you assess sufficiency.

(3) Once you have assigned a variable, continue to label as much of the diagram in terms of that variable. If you need a second variable to fully label the diagram, use it. If you can get away with just one variable and still accomplish the mission, do so.

Most GMAT test-takers know that they need to develop clear strategies when it comes to different types of word problems, and most of those involve either muscling your way through the problem with some kind of practical approach (picking numbers, visualizing, back-solving, logical reasoning) or writing out algebraic equations and solving.  There are of course pluses and minuses to all of the approaches and those need to be weighed by each person on an individual basis. What few realize, however, is that geometry questions can also demonstrate that level of complexity and thus can often also be solved with the tools of algebra. When actual values are few and far between, don’t hesitate to pull out an “x” (and possibly also a “y”) and see what kind of equations/expressions you can cook up.

For more practice in “algebrating” a geometry question, please see OG 13th DS 79 and Quant Supplement 2nd editions PS 157, 162 and DS 60, 114 and 123.

 

gmat-math-strategies-01A while back, we talked about the 4 GMAT math strategies that everyone needs to master. Today, I’ve got some additional practice for you with regard to one of those strategies: Testing Cases.

Try this GMATPrep® problem:

* ” If xy + z = x(y + z), which of the following must be true?

“(A) x = 0 and z = 0

“(B) x = 1 and y = 1

“(C) y = 1 and z = 0

“(D) x = 1 or y = 0

“(E) x = 1 or z = 0

How did it go?

This question is called a “theory” question: there are just variables, no real numbers, and the answer depends on some characteristic of a category of numbers, not a specific number or set of numbers. Problem solving theory questions also usually ask what must or could be true (or what must not be true). When we have these kinds of questions, we can use theory to solve—but that can get very confusing very quickly. Testing real numbers to “prove” the theory to yourself will make the work easier.

The question stem contains a given equation:

xy + z = x(y + z)

Whenever the problem gives you a complicated equation, make your life easier: try to simplify the equation before you do any more work.

xy + z = x(y + z)

xy + z = xy + xz

z =  xz

Very interesting! The y term subtracts completely out of the equation. What is the significance of that piece of info?

Nothing absolutely has to be true about the variable y. Glance at your answers. You can cross off (B), (C), and (D) right now!

Next, notice something. I stopped at z = xz. I didn’t divide both sides by z. Why?

In general, never divide by a variable unless you know that the variable does not equal zero. Dividing by zero is an “illegal” move in algebra—and it will cause you to lose a possible solution to the equation, increasing your chances of answering the problem incorrectly.

The best way to finish off this problem is to test possible cases. Notice a couple of things about the answers. First, they give you very specific possibilities to test; you don’t even have to come up with your own numbers to try. Second, answer (A) says that both pieces must be true (“and”) while answer (E) says “or.” Keep that in mind while working through the rest of the problem.

z =  xz

Let’s see. z = 0 would make this equation true, so that is one possibility. This shows up in both remaining answers.

If x = 0, then the right-hand side would become 0. In that case, z would also have to be 0 in order for the equation to be true. That matches answer (A).

If x = 1, then it doesn’t matter what z is; the equation will still be true. That matches answer (E).

Wait a second—what’s going on? Both answers can’t be correct.

Be careful about how you test cases. The question asks what MUST be true. Go back to the starting point that worked for both answers: z = 0.

It’s true that, for example, 0 = (3)(0).

Does z always have to equal 0? Can you come up with a case where z does not equal 0 but the equation is still true?

Try 2 = (1)(2). In this case, z = 2 and x = 1, and the equation is true. Here’s the key to the “and” vs. “or” language. If z = 0, then the equation is always 0 = 0, but if not, then x must be 1; in that case, the equation is z = z. In other words, either x = 1 OR z = 0.

The correct answer is (E).

The above reasoning also proves why answer (A) could be true but doesn’t always have to be true. If both variables are 0, then the equation works, but other combinations are also possible, such as z = 2 and x = 1.

Key Takeaways: Test Cases on Theory Problems

(1) If you didn’t simplify the original equation, and so didn’t know that y didn’t matter, then you still could’ve tested real numbers to narrow down the answers, but it would’ve taken longer. Whenever possible, simplify the given information to make your work easier.

(2) Must Be True problems are usually theory problems. Test some real numbers to help yourself understand the theory and knock out answers. Where possible, use the answer choices to help you decide what to test.

(3) Be careful about how you test those cases! On a must be true question, some or all of the wrong answers could be true some of the time; you’ll need to figure out how to test the cases in such a way that you figure out what must be true all the time, not just what could be true.

 

* GMATPrep® questions courtesy of the Graduate Management Admissions Council. Usage of this question does not imply endorsement by GMAC.

c-trapHave you heard of the C-Trap? I’m not going to tell you what it is yet. Try this problem from GMATPrep® first and see whether you can avoid it

* “In a certain year, the difference between Mary’s and Jim’s annual salaries was twice the difference between Mary’s and Kate’s annual salaries. If Mary’s annual salary was the highest of the 3 people, what was the average (arithmetic mean) annual salary of the 3 people that year?

“(1) Jim’s annual salary was $30,000 that year.

“(2) Kate’s annual salary was $40,000 that year.”

I’m going to do something I normally never do at this point in an article: I’m going to tell you the correct answer. I’m not going to type the letter, though, so that your eye won’t inadvertently catch it while you’re still working on the problem. The correct answer is the second of the five data sufficiency answer choices.

How did you do? Did you pick that one? Or did you pick the trap answer, the third one?

Here’s where the C-Trap gets its name: on some questions, using the two statements together will be sufficient to answer the question. The trap is that using just one statement alone will also get you there—so you can’t pick answer (C), which says that neither statement alone works.

In the trickiest C-Traps, the two statements look almost the same (as they do in this problem), and the first one doesn’t work. You’re predisposed, then, to assume that the second statement, which seemingly supplies the “same” kind of information, also won’t work. Therefore, you don’t vet the second statement thoroughly enough before dismissing it—and you’ve just fallen into the trap.

How can you dig yourself out? First of all, just because two statements look similar, don’t assume that they either both work or both don’t. The test writers are really good at setting traps, so assume nothing.
Continue Reading…

data-sufficiencySome Data Sufficiency questions present you with scenarios: stories that could play out in various complicated ways, depending on the statements. How do you get through these with a minimum of time and fuss?

Try the below problem. (Copyright: me! I was inspired by an OG problem; I’ll tell you which one at the end.)

* “During a week-long sale at a car dealership, the most number of cars sold on  any one day was 12. If at least 2 cars were sold each day, was the average daily number of cars sold during that week more than 6?

“(1) During that week, the second smallest number of cars sold on any one day was 4.

“(2) During that week, the median number of cars sold was 10.”

First, do you see why I described this as a “scenario” problem? All these different days… and some number of cars sold each day… and then they (I!) toss in average and median… and to top it all off, the problem asks for a range (more than 6). Sigh.

Okay, what do we do with this thing?

Because it’s Data Sufficiency, start by establishing the givens. Because it’s a scenario, Draw It Out.

Let’s see. The “highest” day was 12, but it doesn’t say which day of the week that was. So how can you draw this out?

Neither statement provides information about a specific day of the week, either. Rather, they provide information about the least number of sales and the median number of sales.

The use of median is interesting. How do you normally organize numbers when you’re dealing with median?

Bingo! Try organizing the number of sales from smallest to largest. Draw out 7 slots (one for each day) and add the information given in the question stem:

Screen Shot 2014-04-10 at 12.37.53 PM

Now, what about that question? It asks not for the average, but whether the average number of daily sales for the week is more than 6. Does that give you any ideas for an approach to take?

Because it’s a yes/no question, you want to try to “prove” both yes and no for each statement. If you can show that a statement will give you both a yes and a no, then you know that statement is not sufficient. Try this out with statement 1

(1) During that week, the least number of cars sold on any one day was 4.

Draw out a version of the scenario that includes statement (1):

Screen Shot 2014-04-10 at 12.38.22 PM

Can you find a way to make the average less than 6? Keep the first day at 2 and make the other days as small as possible:

Screen Shot 2014-04-10 at 12.38.58 PM

The sum of the numbers is 34. The average is 34 / 7 = a little smaller than 5.

Can you also make the average greater than 6? Try making all the numbers as big as possible:

Screen Shot 2014-04-10 at 12.39.24 PM

(Note: if you’re not sure whether the smallest day could be 4—the wording is a little weird—err on the cautious side and make it 3.)

You may be able to eyeball that and tell it will be greater than 6. If not, calculate: the sum is 67, so the average is just under 10.

Statement (1) is not sufficient because the average might be greater than or less than 6. Cross off answers (A) and (D).

Now, move to statement (2):

(2) During that week, the median number of cars sold was 10.

Again, draw out the scenario (using only the second statement this time!).

Screen Shot 2014-04-10 at 12.39.59 PM

Can you make the average less than 6? Test the smallest numbers you can. The three lowest days could each be 2. Then, the next three days could each be 10.

Screen Shot 2014-04-10 at 12.40.21 PM

The sum is 6 + 30 + 12 = 48. The average is 48 / 7 = just under 7, but bigger than 6. The numbers cannot be made any smaller—you have to have a minimum of 2 a day. Once you hit the median of 10 in the middle slot, you have to have something greater than or equal to the median for the remaining slots to the right.

The smallest possible average is still bigger than 6, so this statement is sufficient to answer the question. The correct answer is (B).

Oh, and the OG question is DS #121 from OG13. If you think you’ve got the concept, test yourself on the OG problem.

 

Key Takeaway: Draw Out Scenarios

(1) Sometimes, these scenarios are so elaborate that people are paralyzed. Pretend your boss just asked you to figure this out. What would you do? You’d just start drawing out possibilities till you figured it out.

(2) On Yes/No DS questions, try to get a Yes answer and a No answer. As soon as you do that, you can label the statement Not Sufficient and move on.

(3) After a while, you might have to go back to your boss and say, “Sorry, I can’t figure this out.” (Translation: you might have to give up and guess.) There isn’t a fantastic way to guess on this one, though I probably wouldn’t guess (E). The statements don’t look obviously helpful at first glance… which means probably at least one of them is!